Graph-based Image Anomaly Detection

نویسندگان

  • Francesco Verdoja
  • Marco Grangetto
چکیده

RX Detector is recognized as the benchmark algorithm for image anomaly detection, however it presents known limitations, namely the dependence over the image following a multivariate Gaussian model, the estimation and inversion of a highly dimensional covariance matrix and the inability to effectively include spatial awareness in its evaluation. In this work a novel graph-based solution to the image anomaly detection problem is proposed; leveraging on the Graph Fourier Transform, we are able to overcome some of RX Detector’s limitations while reducing computational cost at the same time. Tests over both hyperspectral and medical images, using both synthetic and real anomalies, prove the proposed technique is able to obtain significant gains over RX Detector performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Separation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image

The application of anomaly detection has been given a special place among the different   processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...

متن کامل

Geological noise removal in geophysical magnetic survey to detect unexploded ordnance based on image filtering

This paper describes the application of three straightforward image-based filtering methods to remove the geological noise effect which masks unexploded ordnances (UXOs) magnetic signals in geophysical surveys. Three image filters comprising of mean, median and Wiener are used to enhance the location of probable UXOs when they are embedded in a dominant background geological noise. The study ar...

متن کامل

A Novel Real-time Human Activity Based Anomaly Detection Model Using Graph Based Clustering and Classification Model

Detecting online abnormality in the video surveillance is a challenging issue due to streaming, video noise, outliers and resolution. Traditional trajectory based anomaly detection model which analyzes the video training patterns for anomaly detection. This paper aims to solve the problem of video noise and anomaly detection .In this paper, a novel filtered based ensemble clustering and classif...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.09843  شماره 

صفحات  -

تاریخ انتشار 2018